Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 9: 528, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534137

RESUMO

Coccidiosis in poultry, caused by protozoan parasites of the genus Eimeria, is an intestinal disease with substantial economic impact. With the use of anticoccidial drugs under public and political pressure, and the comparatively higher cost of live-attenuated vaccines, an attractive complementary strategy for control is to breed chickens with increased resistance to Eimeria parasitism. Prior infection with Eimeria maxima leads to complete immunity against challenge with homologous strains, but only partial resistance to challenge with antigenically diverse heterologous strains. We investigate the genetic architecture of avian resistance to E. maxima primary infection and heterologous strain secondary challenge using White Leghorn populations of derived inbred lines, C.B12 and 15I, known to differ in susceptibility to the parasite. An intercross population was infected with E. maxima Houghton (H) strain, followed 3 weeks later by E. maxima Weybridge (W) strain challenge, while a backcross population received a single E. maxima W infection. The phenotypes measured were parasite replication (counting fecal oocyst output or qPCR for parasite numbers in intestinal tissue), intestinal lesion score (gross pathology, scale 0-4), and for the backcross only, serum interleukin-10 (IL-10) levels. Birds were genotyped using a high density genome-wide DNA array (600K, Affymetrix). Genome-wide association study located associations on chromosomes 1, 2, 3, and 5 following primary infection in the backcross population, and a suggestive association on chromosome 1 following heterologous E. maxima W challenge in the intercross population. This mapped several megabases away from the quantitative trait locus (QTL) linked to the backcross primary W strain infection, suggesting different underlying mechanisms for the primary- and heterologous secondary- responses. Underlying pathways for those genes located in the respective QTL for resistance to primary infection and protection against heterologous challenge were related mainly to immune response, with IL-10 signaling in the backcross primary infection being the most significant. Additionally, the identified markers associated with IL-10 levels exhibited significant additive genetic variance. We suggest this is a phenotype of interest to the outcome of challenge, being scalable in live birds and negating the requirement for single-bird cages, fecal oocyst counts, or slaughter for sampling (qPCR).

2.
Genet Sel Evol ; 50(1): 63, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463512

RESUMO

BACKGROUND: Coccidiosis is a major contributor to losses in poultry production. With emerging constraints on the use of in-feed prophylactic anticoccidial drugs and the relatively high costs of effective vaccines, there are commercial incentives to breed chickens with greater resistance to this important production disease. To identify phenotypic biomarkers that are associated with the production impacts of coccidiosis, and to assess their covariance and heritability, 942 Cobb500 commercial broilers were subjected to a defined challenge with Eimeria tenella (Houghton). Three traits were measured: weight gain (WG) during the period of infection, caecal lesion score (CLS) post mortem, and the level of a serum biomarker of intestinal inflammation, i.e. circulating interleukin 10 (IL-10), measured at the height of the infection. RESULTS: Phenotypic analysis of the challenged chicken cohort revealed a significant positive correlation between CLS and IL-10, with significant negative correlations of both these traits with WG. Eigenanalysis of phenotypic covariances between measured traits revealed three distinct eigenvectors. Trait weightings of the first eigenvector, (EV1, eigenvalue = 59%), were biologically interpreted as representing a response of birds that were susceptible to infection, with low WG, high CLS and high IL-10. Similarly, the second eigenvector represented infection resilience/resistance (EV2, 22%; high WG, low CLS and high IL-10), and the third eigenvector tolerance (EV3, 19%; high WG, high CLS and low IL-10), respectively. Genome-wide association studies (GWAS) identified two SNPs that were associated with WG at the suggestive level. CONCLUSIONS: Eigenanalysis separated the phenotypic impact of a defined challenge with E. tenella on WG, caecal inflammation/pathology, and production of IL-10 into three major eigenvectors, indicating that the susceptibility-resistance axis is not a single continuous quantitative trait. The SNPs identified by the GWAS for body weight were located in close proximity to two genes that are involved in innate immunity (FAM96B and RRAD).


Assuntos
Galinhas/genética , Coccidiose/veterinária , Eimeria tenella/patogenicidade , Interleucina-10/sangue , Animais , Peso Corporal/genética , Ceco/patologia , Coccidiose/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Interleucina-10/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Doenças das Aves Domésticas/genética , Aumento de Peso/genética
3.
PLoS One ; 12(9): e0184890, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934262

RESUMO

Eimeria species cause the intestinal disease coccidiosis, most notably in poultry. While the direct impact of coccidiosis on animal health and welfare is clear, its influence on the enteric microbiota and by-stander effects on chicken health and production remains largely unknown, with the possible exception of Clostridium perfringens (necrotic enteritis). This study evaluated the composition and structure of the caecal microbiome in the presence or absence of a defined Eimeria tenella challenge infection in Cobb500 broiler chickens using 16S rRNA amplicon sequencing. The severity of clinical coccidiosis in individual chickens was quantified by caecal lesion scoring and microbial changes associated with different lesion scores identified. Following E. tenella infection the diversity of taxa within the caecal microbiome remained largely stable. However, infection induced significant changes in the abundance of some microbial taxa. The greatest changes were detected in birds displaying severe caecal pathology; taxa belonging to the order Enterobacteriaceae were increased, while taxa from Bacillales and Lactobacillales were decreased with the changes correlated with lesion severity. Significantly different profiles were also detected in infected birds which remained asymptomatic (lesion score 0), with taxa belonging to the genera Bacteroides decreased and Lactobacillus increased. Many differential taxa from the order Clostridiales were identified, with some increasing and others decreasing in abundance in Eimeria-infected animals. The results support the view that caecal microbiome dysbiosis associated with Eimeria infection contributes to disease pathology, and could be a target for intervention to mitigate the impact of coccidiosis on poultry productivity and welfare. This work highlights that E. tenella infection has a significant impact on the abundance of some caecal bacteria with notable differences detected between lesion score categories emphasising the importance of accounting for differences in caecal lesions when investigating the relationship between E. tenella and the poultry intestinal microbiome.


Assuntos
Doenças das Aves/microbiologia , Ceco/microbiologia , Galinhas/microbiologia , Coccidiose/veterinária , Eimeria tenella , Microbioma Gastrointestinal , Animais , Doenças das Aves/patologia , Ceco/patologia , Coccidiose/microbiologia , Coccidiose/patologia , Microbioma Gastrointestinal/genética , Filogenia , RNA Ribossômico 16S/genética , Distribuição Aleatória , Análise de Sequência de DNA , Índice de Gravidade de Doença
4.
Parasit Vectors ; 10(1): 340, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720110

RESUMO

BACKGROUND: Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions. RESULTS: Diagnostic PCR detected Cryptosporidium parvum in one sample from a mountain gorilla (IIdA23G2) and one from a goat (based on SSU). Cryptosporidium was not detected in humans or cattle. Cyclospora was not detected in any of the samples analysed. Giardia was identified in three human and two cattle samples, which were linked to assemblage A, B and E of G. duodenalis. Sequences defined as belonging to the genus Entamoeba were identified in all host groups. Of the 86 sequence types characterised, one, seven and two have been recorded previously to represent genotypes of Cryptosporidium, Giardia, and Entamoeba, respectively, from humans, other mammals, and water sources globally. CONCLUSIONS: This study provides a snapshot of the occurrence and genetic make-up of selected protists in mammals in and around BINP. The genetic analyses indicated that 54.6% of the 203 samples analysed contained parasites that matched species, genotypes, or genetic assemblages found globally. Seventy-six new sequence records were identified here for the first time. As nothing is known about the zoonotic/zooanthroponotic potential of the corresponding parasites, future work should focus on wider epidemiological investigations together with continued surveillance of all parasites in humans, other mammals, the environment, and water in this highly impoverished area.


Assuntos
Gorilla gorilla/parasitologia , Gado/parasitologia , Parasitos/classificação , Parasitos/isolamento & purificação , Doenças Parasitárias em Animais/parasitologia , Doenças Parasitárias/parasitologia , Animais , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Humanos , Parasitos/genética , Parques Recreativos , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , População Rural , Análise de Sequência de DNA , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...